Current Conditions Biota Sampling 2019

April 4, 2019

DQOs for Biota Tissue Program

Primary DQO – Evaluate trends

Collect initial data to establish current chemical (TCDD and PCBs) concentrations in fish and crab in the LPRSA upper 9-mile area (RM 8.3 to Dundee Dam) to monitor changes in post-interim action changes in tissue concentrations.

Secondary DQO – Refine/validate FWM

Evaluate FWM performance using the 2019 fish and crab tissue data and refine model as needed.

Current Conditions DQOs: Fish and crab tissue analysis

DQO	Study Questions	Data Evaluations
1 – Evaluate trends	 What are the current chemical (TCDD, PCBs) concentrations in fish and crab in the LPRSA (upper 9 miles)? How do the current conditions determine potential for biota recovery via trend analysis? 	Establish concentrations for future trend analysis
2 – Refine and validate FWM	 Hoes does the FWM perform using the 2019 data? Can the calibration of the model be improved? 	Evaluate model performanceRefine FWM

Overview of Approach

- Objective understand area-wide average TCDD and total PCB concentrations in fish and crab for the upper 9 miles of the LPRSA (RM 8.3-Dam).
- Sampling areas
 - Focus on four primary areas for sample design informed by 2009/2010 data and Food Web Model (FWM) areas
 - RM 8.3-11, RM 11-13.5, RM 13.5-14.7, and RM 14.7-Dam
- Collect samples during the same time of year as most samples in 2009/2010 (late summer/early fall).

Selection of Species for Sampling

Possible Species	Useful for FWM Validation?	LPRSA Abundance	Site Fidelity (short-term)	Salinity Tolerance	Proposed for Sampling?
Small forage fish (sunfish)	X	moderate/ high	high	no	Yes
American eel (<35 cm)	X	moderate (high near dam)	moderate; move out of LPRSA to spawn as adults	yes	No
American eel (>35 cm)	Х	moderate	moderate; move out of LPRSA to spawn as adults	yes	Yes
Blue crab	X	high	low/moderate	yes	Yes
Carp	X	high	moderate; may also move into tributaries	no	Yes
White perch (adult)	Х	moderate	low	yes	yes
Catfish	X	moderate	low	moderate	No
Bass	X	low	high	no	No

Sampling Areas

Evaluating Trends

- Methods:
 - Graphical evaluation
- Reducing variance
 - Target fish sizes
 - Species
 - Sampling areas

Proposed biota tissue sampling

Proposed species for sampling:

Species	Proposed Tissue Type(s)	Target No. of Samples	Fish Per Composite	Most Effective Sampling Method (s)
American eel (35-60 cm)	Fillet, remainder (calc'd WB)	12 composites	3	trotline
Blue crab	muscle/hep, carcass (calc'd WB)	12 composites	3	crab trap, gillnet
Carp	Fillet, remainder (calc'd WB)	12 composites	3	gillnet, boat electrofishing
Small forage fish (sunfish)	Whole body	12 composites	5 to 10	electrofishing (boat/backpack), minnow trap, beach seine
Perch	Fillet, remainder (calc'd WB)	12 composites	3	gillnet, boat electrofishing

- Year 1 target maximum of 60 composites (108 analytical samples)
- Methods trotlines, boat electrofishing, crab traps, minnow traps, gillnets, and beach seine

Adaptive Sample Design

Use Year 1 data to determine the following:

Tissue types –

• Is the relationship between fillet (or muscle for blue crab) and whole body concentrations sufficient to allow for only the collection of fillet (or muscle) data during year 3 sampling?

Need for Year 2 Sampling and Number of samples –

- Evaluate the need for Year 2 sampling (i.e., conduct sampling if significant changes in conditions that would affect chemical exposure such as shift in water temperatures or sustained water flow that might affect prey availability.)
- Are fewer samples acceptable for future monitoring work based on measured variances in tissue concentrations?

Biota tissue sampling task deadlines

Month	Task
	Determine details of sampling plan with EPA
	Finalize boat/equipment contractor(s)
April	Finalize laboratories and analytical methods
	Finalize field sampling dates
	Initiate work on parts of QAPP Addendum
	QAPP Addendum Preparation and submittal to CPG
May	 Establish subcontract agreements and POs (boat operators, laboratories, and validator)
	Apply for NJDEP scientific collection permit
June	EPA review of QAPP Addendum
Luter	Locate and set-up field laboratory.
July	Conduct pre-sampling recon (site conditions and access)
August	Mobilization of supplies and equipment prep to field facility
August	Finalize QAPP addendum
September	Fieldwork begins (target starting field effort in mid-September)

QAPP Addendum Schedule

• Draft schedule for QAPP Addendum:

	QAPP Addendum	Review Duration
To CPG	May 17	2 weeks
To EPA	June 15	3 weeks
Revised to EPA (draft final)	July 15	1 week
Comments from EPA	August 1	1 week
Final QAPP to EPA	August 21	

 Assumes meetings with EPA prior to May 1 to finalize key details (e.g., species, number of samples, laboratories/methods, etc.)

Analytical Laboratories

Analysis/ Sample Prep	Previous Lab	Proposed Lab
Tissue processing and compositing	Alpha Analytical	Alpha Analytical
PCBs	SGS - Analytical Perspectives	Cape Fear Analytical
Dioxins/furans	SGS - Analytical Perspectives	Cape Fear Analytical
Lipids	CAS	TBD – Method dependent
Percent Moisture	Alpha Analytical	Cape Fear or Alpha Analytical

Notes:

- Is Bligh-Dyer lipid method required?
- Staffing changes at SGS-AP
- Validator = LDC
- Data management = ddms